Showing posts with label CX700. Show all posts
Showing posts with label CX700. Show all posts

What are the CLARiiON SAN fan-in and fan-out configuration rules?"

Fan-In Rule: A server can be zoned to a maximum of four storage systems.

Fan-Out Rule:

  • For FC5300 with Access Logix software - 1 - 4 servers (eight initiators) to 1 storage system.
  • For FC4500 with Access Logix - 15 servers to 1 storage system; each server with a maximum of one (single) path to an SP.
  • For FC4700 with Base or Access Logix software 8.42.xx or higher - 32 initiators per SP port for a maximum of 128 initiators per FC4700. Each port on each SP supports 32 initiators. Ports 0 and 1 on each SP in a FC4700 handles server connections. Port 1 on each SP in a FC4700 with MirrorView also handles remote mirror connections. In a remote mirror configuration, each path between SP A port 1 on one storage system and SP A port 1 on another storage system counts as one initiator for each port 1. Likewise, each path between SP B port 1 on one storage system and SP B port 1 on another storage system counts as one initiator for each port 1.
  • For FC4700 with Base or Access Logix software 8.41.xx or lower - 15 servers to 1 storage system; each server with a maximum of one (single) path to an SP.
  • For CX200 - 15 initiators per SP, each with a maximum of one (single) path to an SP; maximum of 15 servers.
  • Fan-Out for CX300 - 64 initiators per SP for a maximum of 128 initiators per storage system.
  • For CX400 - 32 initiators per SP port for a maximum of 128 initiators per CX400. Each port on each SP supports 32 initiators. Ports 0 and 1 on each SP in a CX400 handles server connections. Port 1 on each SP in a CX400 with MirrorView also handles remote mirror connections. In a remote mirror configuration, each path between SP A port 1 on one storage system and SP A port 1 on another storage system counts as one initiator for each port 1. Likewise, each path between SP B port 1 on one storage system and SP B port 1 on another storage system counts as one initiator for each port 1.
  • Fan-Out CX500 - 128 initiators per SP and maximum of 256 initiators per CX500 available for server connections. Ports 0 and 1 on each SP handle server connections. Port 1 on each SP in a CX500 with MirrorView/A or MirrorView/S enabled also handles remote mirror connections. Each path used in a MirrorView or SAN Copy relationship between two storage system counts as an initiator for both storage systems.
  • For CX600 - 32 initiators per SP port and maximum of 256 initiators per CX600 available for server connections. Ports 0, 1, 2, and 3 on each SP in any CX600 handle server connections. Port 3 on each SP in a CX600 with MirrorView also handles remote mirror connections. In a remote mirror configuration, each path between SP-A port 3 on one storage system and SP-A port 3 on another storage system counts as one initiator for each port 3. Likewise, each path between SP-B port 3 on one storage system and SP-B port 3 on another storage system counts as one initiator for each port 3.
  • Fan-Out CX700 - 256 initiators per SP and maximum of 512 initiators per CX700 available for server connections. Ports 0, 1, 2, and 3 on each SP in any CX700 handle server connections. Port 3 on each SP in a CX700 with MirrorView/A or MirrorView/S enabled also handles remote mirror connections. Each path used in a MirrorView or SAN Copy relationship between two storage system counts as an initiator for both storage systems
  • An initiator is any device with access to an SP port. Each port on each SP supports 32 initiators. Check with your support provider to confirm that the above rules are still in effect.

What are the differences between failover modes on a CLARiiON array?

A CLARiiON array is an Active/Passive device and uses a LUN ownership model. In other words, when a LUN is bound it has a default owner, either SP-A or SP-B. I/O requests traveling to a port SP-A can only reach LUNs owned by SP-A and I/O requests traveling to a port on SP-B can only reach LUNs owned SP-B. It is necessary to have different failover methods because in certain situations a host will need to access a LUN on the non-owning SP.

The following failover modes apply:

Failover Mode 0

LUN Based Trespass Mode This failover mode is the default and works in conjunction with the Auto-trespass feature. Auto-trespass is a mode of operation that is set on a LUN by LUN basis. If Auto-Trespass is enabled on the LUN, the non-owning SP will report that the LUN exists and is available for access. The LUN will trespass to the SP where the I/O request is sent. Every time the LUN is trespassed a Unit Attention message is recorded. If Auto-trespass is disabled, the non-owning SP will report that the LUN exists but it is not available for access. If an I/O request is sent to the non-owning SP, it is rejected and the LUN’s ownership will not change.
Note: The combination of Failover Mode 0 and Auto-Trespass can be dangerous if the host is sending I/O requests to both SP-A and SP-B because the LUN will need to trespass to fulfill each request. This combination is most commonly seen on an HP-UX server using PV-Links. The Auto-trespass feature is enabled through the Initiator Type setting of HP-AutoTrespass. A host with no failover software should use the combination of Failover Mode 0 and Auto-trespass disabled.

Failover Mode 1 – Passive Not Ready Mode In this mode of operation the non-owning SP will report that all non-owned LUNs exist and are available for access. Any I/O request that is made to the non-owning SP will be rejected. A Test Unit Ready (TUR) command sent to the non-owning SP will return with a status of device not ready. This mode is similar to Failover Mode 0 with Auto-Trespass disabled. Note: This mode is most commonly used with PowerPath. To a host without PowerPath, and configured with Failover Mode 1, every passive path zoned, for example, a path to SP-B for a LUN owned by SP-A, will show to the server as Not Ready. This will show as with offline errors on a Solaris server, SC_DISK_ERR2 errors with sense bytes 0102, 0700, and 0403 on an AIX server or buffer to I/O errors on a Linux server. If PowerPath is installed, these types of messages should not occur.

Failover Mode 2 – DMP Mode In this mode of operation the non-owning SP will report that all non-owned LUNs exist and are available for access. This is similar to Failover Mode 0 with Auto-trespass Enabled. Any I/O requests made to the non-owning SP will cause the LUN to be trespassed to the SP that is receiving the request. The difference between this mode and Auto-trespass mode is that Unit Attention messages are suppressed. Note: This mode is used for some Veritas DMP configurations on some operating systems. Because of the similarities to Auto-Trespass, this mode has been known to cause “Trespass Storms.” If a server runs a script that probes all paths to the Clariion, for instance format on a Solaris server, the LUN will trespass to the non owning SP when the I/O request is sent there. If this occurs for multiple LUNs, a significant amount of trespassing will occur.

Failover Mode 3 – Passive Always Ready Mode In this mode of operation the non-owning SP will report that all non-owned LUNs exist and are available for access. Any I/O requests sent to the Non-owning SP will be rejected. This is similar to Failover Mode 1. However, any Test Unit Ready command sent from the server will return with a success message, even to the non-owning SP. Note: This mode is only used on AIX servers under very specific configuration parameters and has been developed to better handle a CLARiiON non-disruptive upgrade (NDU) when AIX servers are attached.

About Me

My photo
Sr. Solutions Architect; Expertise: - Cloud Design & Architect - Data Center Consolidation - DC/Storage Virtualization - Technology Refresh - Data Migration - SAN Refresh - Data Center Architecture More info:- diwakar@emcstorageinfo.com
Blog Disclaimer: “The opinions expressed here are my personal opinions. Content published here is not read or approved in advance by EMC and does not necessarily reflect the views and opinions of EMC.”
EMC Storage Product Knowledge Sharing