Showing posts with label SYMMCLI. Show all posts
Showing posts with label SYMMCLI. Show all posts

BCV copies can be used for backup, restore, decision support, and application testing., BCV devices contain no data after initial Symmetrix configuration. The full establish operation must be used the first time the standard devices are paired with their BCV devices.

1.  Associate the BCV Device for pairing:

To perform standard/BCV pairing, the standard and BCV mirror devices of your production images must be members of the same device group (Note:- Already discussed in previous post about creating device group and pairing devices). 


To associate BCV001 with device 0ABC,enter:

  symbcv –g DgName –sid SymmID associate dev 0ABC BCV001


Or to associate a range of devices to a device group, enter:


 symbcv –g DgName –sid SymmID associateall dev –RANGE 0ABC:0DEF


Note:- -sid SymmID is optional if you have already defined device group in symcli environment varaiable.


2. Unmount the BCV device:


Prior to using devices for BCV operations, the BCV device should be Windows formatted and assigned a drive letter.


If using basic disks on the Windows platform, you must unmount the BCV devices. If using dynamic disks, you must deport the entire TimeFinder device group.  For basic disks, use the syminq command to determine the SymDevName of the potential BCV device. For dynamic disks,use the TimeFinder  symntctl command to determine the volume and disk group name as follows:


symntctl list –volume [dg DgName]


Note that the term device group and dynamic disk group are the same applied to this command.


Unmount the selected BCV device as follows (with TimeFinder command):


symntctl unmount –drive z


Where z equals the designated drive letter.  If an error occurs, check for an “openhandle” and clear this condition.


For Veritas dynamic disks only, you must deport the disk group and rescan using the following commands:


vxdg deport –g DgName


symntctl rescan


3. Fully Establish BCV and STD:


To obtain a copy of the data on a standard device, the BCV device of the pair must be established.


To initiate a full establish on a specific standard/BCV device pair, target the standard device:


symmir –g DgName –full establish DEV001


Fully Establish all pairs in a group. To initiate a full establish on all BCV pairs in a device group, enter:


symmir –g DgName –full establish


Verify the completed (synchronized) establish operation. To verify when the BCV pairs reach the full copied or Synchronized state, use the verify action as follows:


symmir –g DgName –i 20 verify


With this interval and count, the message is displayed every 20 seconds until the pair is established.


Rescan the drive connections. For Dynamic disks only on a Windows host, you should rescan for drive connections visible to the host:


symntctl rescan


After any standard/BCV pair has been fully established and subsequently split, to save establish (resync) time, you can perform an establish operation omitting the -full option, which updates the BCV copy with only the changed tracks that occurred on the standard device during the elapsed BCV split time. To perform an incremental establish, omit the –full option, targeting the standard device
of the pair:


symmir -g DgName establish DEV001


Optionally, you can also collectively target all devices in a device group, composite group, or defined devices in a device file:


  symmir –g DgName establish [-full]


 symmir –g CgName establish [-full]


  symmir –file FileName establish [-full]


4. Prepare (freeze) Production database for a TimeFinder Split:


To prepare to split the synchronized BCV device from the production standard device, you must suspend I/O at the application layer or unmount the production standard prior to executing the split operation.


symioctl freeze –type DbType [object]


Ensure any residual cache on the Production host is fully flushed to disk. To insure all pending unwritten production file system entries are captured, enter TimeFinder command:


symntctl flush –drive z


Wait 30 to 60 seconds for the flush operation to complete.   


5. Split the BCV devices:


To split all the BCV devices from the standard devices in the production device group, enter:


symmir –g DgName split


To split a specific standard/BCV pair, target the logical device name in the group, enter:


symmir –g DgName split DEV001


6. Verify the split operation completes:


To verify when the BCV device is completely split from the standard, use the verify action as follows:


symmir –g DgName –i 20 verify –split -bg


With this interval and count, the message is displayed every 20 seconds until the pair is split.


7. Rescan for dynamic disks:


For dynamic disks only, you should rescan for drive connections visible to the host:


symntctl rescan


8. Mounting BCV device:


After splitting the BCV device, you can mount the device with captured data on another host and reassign the drive letter.


For basic disks, use the TimeFinder command:


symntctl  mount –drive z –dg DgName


For Dynamic disks, use the TimeFinder command:


 symntctl mount –drive z –vol VolName   –dg DgName | -guid VolGuid


For VERITAS dynamic disk only, you must deport the disk group and rescan, as follows:


vxdg deport –dg DgName


symntctl rescan


For Dynamic disk only (without Veritas), you can use the Microsoft diskpart command to select the disk and import the device using the online and import actions.


Note:- symntctl command available in TimeFinder/IM ( Integration Module).

Return code handling for Windows and UNIX The following lists the possible status or error codes that can be returned by the various SYMCLI commands on a Windows or UNIX platform and useful for troubleshooting.

Code Code symbol Description
___________________________________________________
0 CLI_C_SUCCESS CLI -- call completed successfully.
1 CLI_C_FAIL CLI - call failed.
2 CLI_C_DB_FILE_IS_LOCKED- Another process has an exclusive
lock on the Host database file.
3 CLI_C_SYM_IS_LOCKED - Another process has an exclusive
lock on the Symmetrix.
4 CLI_C_NOT_ALL_SYNCHRONIZED NOT - all of the mirrored pairs are in the 'Synchronized' state.
5 CLI_C_NONE_SYNCHRONIZED - NONE of the mirrored pairs are in the 'Synchronized' state.
6 CLI_C_NOT_ALL_UPDATED - - NOT all of the mirrored pairs are in the 'Updated' state.
7 CLI_C_NONE_UPDATED --NONE of the mirrored pairs are in the 'Updated' state.
8 CLI_C_NOT_ALL_PINGED -- NOT all of the remote Symmetrix units can be pinged.
9 CLI_C_NONE_PINGED -- NONE of the remote Symmetrix units can be pinged.
10 CLI_C_NOT_ALL_SYNCHED -- NOT all of the mirrored pairs are in the 'Synchronized' state.
11 CLI_C_NONE_SYNCHED -- NONE of the mirrored pairs are in the 'Synchronized' state.
12 CLI_C_NOT_ALL_RESTORED -- NOT all of the pairs are in the 'Restored' state.
13 CLI_C_NONE_RESTORED -- NONE of the pairs are in the 'Restored' state.
14 CLI_C_NOT_ALL_VALID -- NOT all of the mirrored pairs are in a valid state.
15 CLI_C_NONE_VALID -- NONE of the mirrored pairs are in a valid state.
16 CLI_C_SYM_NOT_ALL_LOCKED -- NOT all of the specified Symmetrix units have an exclusive Symmetrix lock.
17 CLI_C_SYM_NONE_LOCKED --NONE of the specified Symmetrix units have an exclusive Symmetrix lock.
18 CLI_C_ALREADY_IN_STATE --The Device(s) is (are) already in the desired state or mode.
19 CLI_C_GK_IS_LOCKED -- All GateKeeper devices to the Symmetrix unit are currently locked.
20 CLI_C_WP_TRACKS_IN_CACHE -- Operation cannot proceed because the target device has Write Pending I/O in the cache.
21 CLI_C_NEED_MERGE_TO_RESUME --Operation cannot proceed without first performing a merge of the RDF Track Tables.
22 CLI_C_NEED_FORCE_TO_PROCEED --Operation cannot proceed in the current state except if you specify a force flag.
23 CLI_C_NEED_SYMFORCE_TO_PROCEED --Operation cannot proceed in the current state except if you specify a symforce flag.
24 CLI_C_NOT_IN_SYNC -- The Symmetrix configuration and the database file are NOT in sync.
25 CLI_C_NOT_ALL_SPLIT -- NOT all of the mirrored pairs are in the 'Split' state.
26 CLI_C_NONE_SPLIT -- NONE of the mirrored pairs are in the 'Split' state.
27 CLI_C_NOT_ALL_SYNCINPROG -- NOT all of the mirrored pairs are in the 'SyncInProg' state.
28 CLI_C_NONE_SYNCINPROG -- NONE of the mirrored pairs are in the 'SyncInProg' state.
29 CLI_C_NOT_ALL_RESTINPROG -- NOT all of the pairs are in the 'RestInProg' state.
30 CLI_C_NONE_RESTINPROG -- NONE of the pairs are in the 'RestInProg' state.
31 CLI_C_NOT_ALL_SUSPENDED -- NOT all of the mirrored pairs are in the 'Suspended' state.
32 CLI_C_NONE_SUSPENDED -- NONE of the mirrored pairs are in the 'Suspended' state.
33 CLI_C_NOT_ALL_FAILED_OVER -- NOT all of the mirrored pairs are in the 'Failed Over' state.
34 CLI_C_NONE_FAILED_OVER -- NONE of the mirrored pairs are in the 'Failed Over' state.
35 CLI_C_NOT_ALL_UPDATEINPROG -- NOT all of the mirrored pairs are in the 'R1 UpdInProg' state.
36 CLI_C_NONE_UPDATEINPROG -- NONE of the mirrored pairs are in the 'R1 UpdInProg' state.
37 CLI_C_NOT_ALL_PARTITIONED -- NOT all of the mirrored pairs are in the 'Partitioned' state.
38 CLI_C_NONE_PARTITIONED -- NONE of the mirrored pairs are in the 'Partitioned' state.
39 CLI_C_NOT_ALL_ENABLED -- NOT all of the mirrored pairs are in the 'Enabled' consistency state.
40 CLI_C_NONE_ENABLED -- NONE of the mirrored pairs are in the 'Enabled' consistency state.
41 CLI_C_NOT_ALL_SYNCHRONIZED_AND_ENABLED -- NOT all of the mirrored pairs are in the 'Synchronized' rdf state and the 'Enabled' consistency state.
42 CLI_C_NONE_SYNCHRONIZED_AND_ENABLED -- NONE of the mirrored pairs are in the 'Synchronized' rdf state and in the 'Enabled' consistency state.
43 CLI_C_NOT_ALL_SUSP_AND_ENABLED -- NOT all of the mirrored pairs are in the 'Suspended' rdf state and 'Enabled' consistency state.
44 CLI_C_NONE_SUSP_AND_ENABLED -- NONE of the mirrored pairs are in the 'Suspended' rdf state and the 'Enabled' consistency state.
45 CLI_C_NOT_ALL_SUSP_AND_OFFLINE -- NOT all of the mirrored pairs are in the 'Suspended' rdf state and 'Offline' link suspend state.
46 CLI_C_NONE_SUSP_AND_OFFLINE -- NONE of the mirrored pairs are in the 'Suspended' rdf state and the 'Offline' link suspend state.
47 CLI_C_WONT_REVERSE_SPLIT -- Performing this operation at this time will not allow you to perform the next BCV split as a reverse split.
48 CLI_C_CONFIG_LOCKED -- Access to the configuration server is locked.
49 CLI_C_DEVS_ARE_LOCKED -- One or more devices are locked.
50 CLI_C_MUST_SPLIT_PROTECT -- If a device was restored with the protect option, it must be split with the protect option.
51 CLI_C_PAIRED_WITH_A_DRV -- The function can not be performed since the STD device is already paired with a DRV device.
52 CLI_C_PAIRED_WITH_A_SPARE -- NOT all of the Snap pairs are in the 'Copy in progress' state.
53 CLI_C_NOT_ALL_COPYINPROG -- NOT all of the pairs are in the 'CopyInProgress' state.
54 CLI_C_NONE_COPYINPROG --NONE of the pairs are in the 'CopyInProgress' state.
55 CLI_C_NOT_ALL_COPIED -- NOT all of the pairs are in the 'Copied' state.
56 CLI_C_NONE_COPIED -- NONE of the pairs are in the 'Copied' state.
57 CLI_C_NOT_ALL_COPYONACCESS -- NOT all of the pairs are in the 'CopyonAccess' state.
58 CLI_C_NONE_COPYONACCESS -- NONE of the pairs are in the 'CopyonAccess' state.
59 CLI_C_CANT_RESTORE_PROTECT --The protected restore operation can not be completed because there are write pendings or the BCV mirrors are not synchronized.
60 CLI_C_NOT_ALL_CREATED -- NOT all of the pairs are in the 'Created' state.
61 CLI_C_NONE_CREATED -- NONE of the pairs are in the 'Created' state.
62 CLI_C_NOT_ALL_READY -- NOT all of the BCVs local mirrors are in the 'Ready' state.
63 CLI_C_NONE_READY -- NONE of the BCVs local mirrors are in the 'Ready' state.
64 CLI_C_STD_BKGRND_SPLIT_IN_PROG -- The operation cannot proceed because the STD Device is splitting in the Background.
65 CLI_C_SPLIT_IN_PROG -- The operation cannot proceed because the pair is splitting.
66 CLI_C_NOT_ALL_COPYONWRITE -- NOT all of the pairs are in the 'CopyOnWrite' state.
67 CLI_C_NONE_COPYONWRITE -- NONE of the pairs are in the 'CopyOnWrite' state.
68 CLI_C_NOT_ALL_RECREATED -- Not all devices are in the 'Recreated' state.
69 CLI_C_NONE_RECREATED -- No devices are in the 'Recreated' state.
70 CLI_C_NOT_ALL_CONSISTENT -- NOT all of the mirrored pairs are in the 'Consistent' state.
71 CLI_C_NONE_CONSISTENT-- NONE of the mirrored pairs are in the 'Consistent' state.
72 CLI_C_MAX_SESSIONS_EXCEEDED-- The maximum number of sessions has been exceeded for the specified device.
73 CLI_C_NOT_ALL_PRECOPY -- Not all source devices are in the 'Precopy' state.
74 CLI_C_NONE_PRECOPY -- No source devices are in the 'Precopy' state.
75 CLI_C_NOT_ALL_PRECOPY_CYCLED -- Not all source devices have completed one precopy cycle.
76 CLI_C_NONE_PRECOPY_CYCLED -- No source devices have completed one precopy cycle.
77 CLI_C_CONSISTENCY_TIMEOUT -- The operation failed because of a Consistency window timeout.
78 CLI_C_NOT_ALL_FAILED -- NOT all of the pairs are in the 'Failed' state.
79 CLI_C_NONE_FAILED -- NONE of the pairs are in the 'Failed' state.
80 CLI_C_CG_NOT_CONSISTENT -- CG is NOT RDF-consistent.
81 CLI_C_NOT_ALL_CREATEINPROG -- NOT all of the pairs are in the 'CreateInProg' state.
82 CLI_C_NONE_CREATEINPROG -- None of the pairs are in the 'CreateInProg' state.
83 CLI_C_NOT_ALL_RECREATEINPROG -- NOT all of the pairs are in the 'RecreateInProg' state.
84 CLI_C_NONE_RECREATEINPROG -- None of the pairs are in the 'RecreateInProg' state.
85 CLI_C_NOT_ALL_TERMINPROG -- NOT all of the pairs are in the 'TerminateInProg' state.
86 CLI_C_NONE_TERMINPROG -- None of the pairs are in the 'TerminateInProg' state.
87 CLI_C_NOT_ALL_VERIFYINPROG -- NOT all of the pairs are in the 'VerifyInProg' state.
88 CLI_C_NONE_VERIFYINPROG -- None of the pairs are in the 'VerifyInProg' state.
89 CLI_C_NOT_ALL_VERIFIED -- NOT all of the pairs are in the requested states.
90 CLI_C_NONE_VERIFIED -- NONE of the pairs are in the requested states Note: This message is returned when multiple states are verified at once.
91 CLI_C_RDFG_TRANSMIT_IDLE -- RDF group is operating in SRDF/A Transmit Idle.
92 CLI_C_NOT_ALL_MIGRATED -- Not all devices are in the ' Migrated' state.
93 CLI_C_NONE_MIGRATED -- None of devices are in the 'Migrated' state.
94 CLI_C_NOT_ALL_MIGRATEINPROG -- Not all devices are in the 'MigrateInProg' state.
95 CLI_C_NONE_MIGRATEINPROG -- None of devices are in the 'MigrateInProg' state.
96 CLI_C_NOT_ALL_INVALID-- Not all devices are in the 'Invalid' state.
97 CLI_C_NONE_INVALID-- None of devices are in the 'Invalid' state.

SYMCLI BASE Commands

symapierr - Used to translate SYMAPI error code numbers into SYMAPI error messages.
symaudit - List records from a symmetrix audit log file.
symbcv - Perform BCV support operations on Symmetrix BCV devices.
symcfg - Discover or display Symmetrix configuration information. Refresh the
host's Symmetrix database file or remove Symmetrix info from the file. Can also
be used to view or release a 'hanging' Symmetrix exclusive lock.
symchg - Monitor changes to Symmetrix devices or to logical objects stored on Symmetrix
devices.
symcli - Provides the version number and a brief description of the commands included in
the Symmetrix Command Line
symdev - Perform operations on a device given the device's Symmetrix name. Can also be
used to view Symmetrix device locks.
symdg - Perform operations on a device group (dg).
symdisk - Display information about the disks within a Symmetrix.
symdrv - List DRV devices on a Symmetrix.
symevent - Monitor or inspect the history of events within a Symmetri
symgate - Perform operations on a gatekeeper device.
symhost - Display host configuration information and performance statistics.
syminq - Issues a SCSI Inquiry command on one or all devices. Interface.
symlabel - Perform label support operations on a Symmetrix device.
symld - Perform operations on a device in a device group (dg).
symlmf - Registers SYMAPI license keys.
sympd - Perform operations on a device given the device's physical name.
symstat - Display statistics information about a Symmetrix, a Director, a device group, or a
device.
symreturn - Used for supplying return codes in pre-action and post-action script files.

SYMCLI CONTROL Commands

symacl - Administer symmetrix access control information.
symauth - Administer symmetrix user authorization information.
symcg - Perform operations on an composite group (cg).
symchksum - Administer checksum checks when an Oracle database writes
data files on Symmetrix devices.
symclone - Perform Clone control operations on a device group or on a
device within the device group.
symconfigure - Perform modifications on the Symmetrix configuration.
symconnect - Setup or Modify Symmetrix Connection Security functionalit
symmask - Setup or Modify Symmetrix Device Masking functionality.
symmaskdb - Backup, Restore, Initialize or Show the contents of
the device masking database.
symmir - Perform BCV control operations on a device group or on a
device within the device group.
symoptmz - Perform Symmetrix Optimizer control operations.
symqos - Perform Quality of Service operations on Symmetrix Devices
symrdf - Perform RDF control operations on a device group or on a
device within the device group.
symreplicate - Perform automated, consistent replication of data given
a pre-configured SRDF/Timefinder setup.
symsnap - Perform Symmetrix Snap control operations on a device
group or on devices in a device file.
symstar - Perform SRDF STAR management operations.
symrcopy - Perform Symmetrix Rcopy control operations on devices in
a device file.

SYMCLI SRM(Mapping) Commands

symhostfs - Display information about a host File, Directory,
or host File System.
symioctl - Send IO control commands to a specified application.
symlv - Display information about a volume in Logical Volume
Group (vg).
sympart - Display partition information about a host device.
symrdb - Display information about a third-party Relational
Database.
symrslv - Display detailed Logical to Physical mapping information
about a logical object stored on Symmetrix devices.
symvg - Display information about a Logical Volume Group (vg).

Generally we never give thought about VCMDB database once we initialize first time. It does make sense when you messup or did some thing disaster. This database is most impppppportaaaaaaant for DMX. Once you loose this database means you can't get DMX configuration back at any cost. So, I am discussing different type of VCMDB on DMX.

We can now support up to 16,000/64000 addressable devices enginuity 5771 onward and therefore the Volume Control Manager Database needs to be physically larger. At 5670, as per EMC recommend CE's were encouraged to create 96 cylinder (minimum) VCMDB during new installs. This was to cater for future upgrades to 5671.

To summarize the VCMDB type applicable to DMX :

Type 3 - this can cater for 32 fibre or iSCSI initiators per port. Introduced with Enginuity 5669 and requires a 24 cylinder (minimum) VCMDB and Solutions Enabler v5.2.

Type 4 - this can cater for 64 fibre or 128 iSCSI initiators per port. Introduced with Enginuity 5670 and requires a 48 cylinder (minimum) VCMDB and Solutions Enabler v5.3.

• Type 5 - this can support 64 fibre or 128 iSCSI initiators per port AND cater for 16,000 devices. Introduced with Enginuity 5671 and requires a 96 cylinder (minimum) VCMDB and Solutions Enabler v6.0. (Note: without a type 5 96cyl VCMDB and SE 6.0 you will be restricted to 8192 logical volumes as in 5670).

Type 6 - this can support 128 fibre or 256 iSCSI initiators per port AND cater for 32,000 devices available on DMX-3 with Enginuity 5771 (at GA release). Currently the Type 6 database (at latest Enginuity 5771 with Solution Enabler 6.0 and above) will cater for 256 fibre or 512 iSCSI initiators and 64,000 logical devices.

What is requirement for Type 5:

The three requirements for a Type 5 VCM database on DMX (and support for up to 16,000 customer addressable volumes) is a correctly configured 96 cylinder VCMDB device, Enginuity 5671 and Solutions Enabler v6.0 or above. Note that the VCMBD “type” reflects the internal data structure of the Volume Control Manager Database. Therefore a 96 cylinder VCMDB size does NOT mean that you have a Type 5 VCMDB.

Note:
• At 5670 with a 48 cylinder VCMDB it is still type 4.
• At 5670 with a 96 cylinder VCMDB it is still type 4.
• At 5670 with a 96 cylinder VCMDB and SE 6.0 it is still type 4 - do not try to convert the database using the SYMCLI (EMC do not support more than 8192 logical volumes at 5670).
• At 5671 with a 48 cylinder VCMDB and SE 6.0 it is still type 4 - the VCMDB is NOT physically large enough.
• At 5671 with a 96 cylinder VCMDB and SE 5.5 it is still type 4 - the VCMDB is large enough but SE 5.5 does not support the Type 5 database.
• At 5671 with a 96 cylinder VCMDB and SE 6.0 it is a type 5 database - if you have run the “symmaskdb convert -vcm_type 5” command. Be aware that if you convert from a lower type database to a higher type, any hosts running a Solutions Enabler version that does not support the higher VCMDB type will NOT be able to access the "new" database.
• At 5771 (DMX-3) the VCMDB data now resides in the SFS volumes. At 5771 the VCMDB should be configured the SAME size as a standard FBA gatekeeper (this can be 3 cylinders due to the 64KB track size but 6 cylinder, as recommended in some guides, is also perfectly acceptable) but it must still be assigned the VCM fibre gatekeeper status. Note that the VCMDB "gatekeeper" on DMX-3 is no longer shown as "write disabled" (it is now a "gatekeeper" rather than a physical volume used for physical storage - the Volume Control Manager data is protected and stored on the internal SFS volumes).
• Note that Enginuity 5771 will ONLY support a Type 6 VCM database (again the data is resident on the SFS volumes). This re-location of the physical database to the SFS volumes caters for the increased host connectivity AND the increase in logical volumes supported with DMX-3.

I am going to discuss about TimeFinder BCV Split operation where Host running on Oracle Database. This split operation is different from normal BCV split operation. There are differences in command as well. Thats reason I am putting steps for this:

The following steps describes splitting BCV devices that hold a database supporting a host running an Oracle database. In this case, the BCV split operation is in an environment without PowerPath or ECA. The split operation described here suspends writes to a database momentarily while an instant split occurs. After an establish operation and the standard device and BCV mirrors are synchronized, the BCV device becomes a mirror copy of the standard device. You can split the paired devices to where each holds separate valid copies of the data, but will no longer remain synchronized to changes when they occur.

The Oracle database is all held on standard and BCV devices assigned to one Oracle device group.

1) Check device status on the database BCVs
To view and check status of the database BCV pairs, use the following form:

symmir –g DgName query

Check the output to ensure all BCV devices listed in the group are in the synchronized state

2) Check and set the user account

For SYMCLI to access a specified database, set the SYMCLI_RDB_CONNECT environment variable to the username and password of the system administrator’s account. The export action sets this variable to a username of system and a password of manager, allowing a local connection as follows:

export SYMCLI_RDF_CONNECT=system/manager

The ORACLE_HOME command specifies the location of the Oracle binaries and the ORACLE_SID command specifies the database instance name as follows:

export ORACLE_HOME=/disks/symapidvt/oraclhome/api179
export ORACLE_sid=api179


You can test basic database connectivity with the symrdb command as follows:

symrdb list –type oracle

3) Backup the database

For safety, perform a database hot backup. For example:

symioctl begin backup –type oracle –nop


4) Freeze the database
For safety, perform a freeze on the database I/O. For example:

symioctl freeze –type oracle –nop

This command suspends writes to the Oracle database.

5) Split all BCV devices in the group
To split all the BCV devices from the standard devices in the database device group, enter:

symmir –g oraclegrp split –instant -noprompt

Make sure the split operation completes on all BCVs in the database device group.

6) Thaw the database to resume I/O
To allow writes to the database to resume for normal operation, enter:

symioctl thaw –type oracle –nop

7) End the backup
To terminate the hot backup mode, enter the following command:

symioctl end backup –type oracle –nop

Mount EMC BCVs at the same host

Example:
I have created a volumegroup, a logical volume, afilesystem and a file on two EMC standard volumes.(For this test you need to have two hdisks hdisk and hdisk andtwo BCVs dev and available)
# mkvg -f -y MyName_vg -s 16 hdisk hdisk
# mklv -y MyName_lv -b n MyName_vg 20
# crfs -v jfs -d MyName_lv -m /MyName_mp -A yes -p rw
# mount /MyName_mp
# lptest > /MyName_mp/lptest.out

For using EMCs TimeFinder I have to create a device group.(AIX is working with volumegroups. EMCs TimeFinder is working withdiskgroups.)With the following command the AIX volumegroup MyName_vg is convertedto the diskgroup MyName_dg)

# symvg vg2dg MyName_vg MyName_dg -dgtype RDF1

For to use TimeFinder I have to associate two BCVs to this devicegroup

# symbcv -g MyName_dg associate dev
# symbcv -g MyName_dg associate dev

Now I have to set the BCVs to the defined-state

# rmbcv -a

Using the establish I mirror all data from the original hdisks to the BCVs (including the PVIDs!)

# symmir -g MyName_dg establish -full -exac

I have to wait until the establish is done

# symmir -g MyName_dg -i 10

Query When the establish is done, I have to unmount my filesystem andvaryoff the volumegroup
# umount /MyName_mp
# varyoffvg MyName_vg

Now I am in the right state to split the BCV copies
# symmir -g MyName_dg split -noprompt

When the split is done, I can varyon my volumegroup and mount myFilesystem

# symmir -g MyName_dg -i 10 query
# varyonvg MyName_vg
# mount /MyName_mp

I configure the BCVs

# mkbcv -a

Now I am able to create a new volumegroup from the BCVs
# recreatevg -y MyName_bcv_vg -Y test -L /bcv hdisk hdisk
# lsvg -l MyName_bcv_vgMyName_bcv_vg:LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINTtestMyName_lv jfs 20 20 1 closed/syncd /bcv/MyName_mptestloglv00 jfslog 1 1 1 closed/syncd N/A

# lspv grep -v None
hdisk0 000039386adb2317 rootvg
hdisk 00003938874658c8 MyName_vg
hdisk 0000393887468473 MyName_vg
hdisk 000039388794adb8 MyName_bcv_vg
hdisk 000039388794b7f5 MyName_bcv_vg

About Me

My photo
Sr. Solutions Architect; Expertise: - Cloud Design & Architect - Data Center Consolidation - DC/Storage Virtualization - Technology Refresh - Data Migration - SAN Refresh - Data Center Architecture More info:- diwakar@emcstorageinfo.com
Blog Disclaimer: “The opinions expressed here are my personal opinions. Content published here is not read or approved in advance by EMC and does not necessarily reflect the views and opinions of EMC.”
EMC Storage Product Knowledge Sharing