Showing posts with label Navisphere Manager. Show all posts
Showing posts with label Navisphere Manager. Show all posts

EMC Unified Storage is 20% more efficient that the competition. Even Erik Estrada from CHiPS knows that now.It's simple to be efficient with EMC

EMC unified storage makes it simple for you to contain information growth and satisfy the needs of your data-hungry virtual machines while requiring 20% less raw capacity. This works to your advantage when comparing EMC to other unified storage arrays. If, for some unlikely reason, EMC isn’t 20% more efficient, we'll match the shortfall with additional storage—that's how confident we are.
Find out more :- http://bit.ly/EMCGuaranteeST

EMC Unisphere - Next generation storage management that provides single and simple interface for both current and future clariion and celerra series. Unisphere provides capability to integrate other element manager and provides built in support tool, software download and live chat etc. Note :-  Unisphere features will be available in Q3 2010:

Check out demo about EMC Unisphere, presented by Bob Abraham :

           


• Task-based navigation and controls offer an intuitive, context-based approach to configuring storage, creating replicas, monitoring the environment, managing host connections, and accessing the Unisphere Support ecosystem.

Self-service Unisphere support ecosystem is accessible with 1-click from Unisphere, providing users with quick access to “real-time” support tools including live chat support, software downloads, product documentation, best practices, FAQs, online customer communities, ordering spares, and submitting service requests.

• Customizable dashboard views and reporting capabilities enable at-a-glance management by automatically presenting end-users with valuable information in context of how they manage storage. For example, customers can develop custom reports 18x faster with EMC Unisphere.

CLARiiON Flare release 29 (04.29.000.5.001) introduce support for several new features as follow:

1) Virtualization-aware Navisphere Manager - Discovery of VMware client always were difficult in earlier release but Flare 29 enables CLARiiON CX4 users and VMware administrators to reduce infrastructure reporting time from hours to minutes. Earlier releases have allowed only a single IP address to be assigned to each iSCSI physical port. With Flare 29, the ability to define multiple virtual iSCSI ports on each physical port has been added along with the ability to tag each virtual port with unique VLAN tag. VLAN tagging has also been added to the single Management Port interface. It should be noted that the IP address and VLAN tag assignments should be carefully coordinated with those supporting the network infrastructure where the storage system will operate

2) Built-in policy-based spin down of idle SATA II drives for CLARiiON CX4 - Lowers power requirements in environments such as test and development in physical and virtual environments. Features include a simple management via a “set it and forget it” policy, complete spin down of inactive drives during times of zero I/O activity, and drives automatically spin back up after a "first I/O" request is received.

3) Virtual Provisioning Phase 2 - Support for MirrorView and SAN Copy replication on thin LUNs has been added.

4) Search feature – Provides users with the ability to search for a wide-variety of objects across their storage systems. Objects can be either logical (e.g., LUN) or physical (e.g., disks).

5) Replication roles - Three additional roles have to be added in Navisphere: “Local Replication Only”, “Replication” and “Replication/ Recovery”.

6) Dedicated VMware software files - VMware software files (i.e. NaviSecCLI, Navisphere Initialization Wizard) are now separate from those of the Linux Operating System.

7) Software filename standardization - all CLARiiON software filenames beginning with FLARE Release 29

8) Changing SP IP addresses - SP IP addresses can now be changed without rebooting the SP. Only the Management Sever will need to be rebooted from the Setup page, which results in no storage system downtime.

9) Linux 64-bit server software – Native 64-bit Linux server software files simplify installation by eliminating the need to gather and load 32-bit DLLs.

10) Solaris x64 Navisphere Host Agent – Release 29 marks the introduction of Solaris 64-bit Navisphere Host Agent software. This Host Agent is backward compatible with older FLARE release.

The Storage Processor (SP) processes all I/Os, host requests, management and maintenance tasks, as well as operations related to replication or migration features.

In Navisphere Analyzer, the statistics for an SP are based on the I/O workload from its attached hosts. It reflects the overall performance of CLARiiON storage system. The following Performance Metrics will be monitored for each CLARiiON storage system.

A LUN is an abstract object whose performance depends on various factors. The primary consideration is whether a host I/O can be satisfied by the cache. A cache hit does not require disk access; a cache miss requires one or more disk accesses to complete the data request.

As the slowest devices in a storage system, disk drives are often responsible for performance-related issues. Therefore, we recommend that you pay close attention to disk drives when analyzing performance problems.

SP performance metrics

Utilization (%)

The percentage of time during which the SP is servicing any request.

Total Throughput (I/O/sec)

The average number of host requests that are passed through the SP per second, including both read and write requests.


Read Throughput (I/O/sec)

The average number of host read requests that are passed through the SP per second.

Write Throughput (I/O/sec)

The average number of host write requests that are passed through the SP per second.

Read Bandwidth (MB/s)

The average amount of host read data in Mbytes that is passed through the SP per second.

Write Bandwidth (MB/s)

The average amount of host write data in Mbytes that is passed through the SP per second.

LUN performance metrics

Response Time (ms)

The average time, in milliseconds, that a request to a LUN is outstanding, including waiting time.

Total Throughput (I/O/sec)

The average number of host requests that are passed through the LUN per second, including both read and write requests.

Read Throughput (I/O/sec)

The average number of host read requests passed through the LUN per second.

Write Throughput (I/O/sec)

The average number of host write requests passed through the LUN per second.

Read Bandwidth (MB/s)

The average amount of host read data in Mbytes that is passed through the LUN per second.

Write Bandwidth (MB/s)

The average amount of host write data in Mbytes that is passed through the LUN per second.

Average Busy Queue Length

The average number of outstanding requests when the LUN was busy. This does not include idle time.

Utilization (%)

The fraction of an observation period during which a LUN has any outstanding requests.

DISK performance metrics

Utilization (%)

The percentage of time that the disk is servicing requests.

Response Time (ms)

The average time, in milliseconds, that it takes for one request to pass through the disk, including any waiting time.

Total Throughput (I/O/sec)

The average number of requests to the disk on a per second basis. Total throughput includes both read and write requests.

Read Throughput (I/O/sec)

The average number of read requests to the disk per second.

Write Throughput (I/O/sec)

The average number of write requests to the disk per second.

Read Bandwidth (MB/s)

The average amount of data read from the disk in Mbytes per second.

Write Bandwidth (MB/s)

The average amount of data written to the disk in Mbytes per second.

Average Busy Queue Length

The average number of requests waiting at a busy disk to be serviced,

including the request that is currently in service.

CLARiiON SP, LUN and DISK performance data is retrieved and processed daily. Raw performance data is kept for a longer term, i.e. 180 days, and CLARiiON performance reports are kept indefinitely for performance trend analysis.


If you have a multihomed host and are running like :
· IBM AIX,
· HP-UX,
· Linux,
· Solaris,
· VMware ESX Server (2.5.0 or later), or
· Microsoft Windows
you must create a parameter file for Navisphere Agent, named agentID.txt
About the agentID.txt file:

This file, agentID.txt (case sensitive), ensures that the Navisphere Agent binds to the correct HBA/NIC for registration and therefore registers the host with the correct storage system. The agentID.txt file must contain the following two lines:
Line1: Fully-qualified hostname of the host
Line 2: IP address of the HBA/NIC port that you want Navisphere Agent to use
For example, if your host is named host28 on the domain mydomain.com and your host contains two HBAs/NICs, HBA/NIC1 with IP address 192.111.222.2 and HBA/NIC2 with IP address 192.111.222.3, and you want the Navisphere Agent to use NIC 2, you would configure agentID.txt as follows:
host28.mydomain.com
192.111.222.3

To create the agentID.txt file, continue with the appropriate procedure for your operating system:
For IBM AIX, HP-UX, Linux, and Solaris:
1. Using a text editor that does not add special formatting, create or edit a file named agentID.txt in either / (root) or in a directory of your choice.
2. Add the hostname and IP address lines as described above. This file should contain only these two lines, without formatting.
3. Save the agentID.txt file.
4. If you created the agentID.txt file in a directory other than root, for Navisphere Agent to restart after a system reboot using the correct path to the agentID.txt file, set the environment variable EV_AGENTID_DIRECTORY to point to the directory where you created agentID.txt.
5. If a HostIdFile.txt file is present in the directory shown for your operating system, delete or rename it. The HostIdFile.txt file is located in the following directory for your operating system:
AIX :- /etc/log/HostIdFile.txt
HP-UX :- /etc/log/HostIdFile.txt
Linux :- /var/log/HostIdFile.txt
Solaris :- /etc/log/HostIdFile.txt
6. Stop and then restart the Navisphere Agent.
NOTE: Navisphere may take some time to update, however, it should update within 10 minutes.
7. Once the Navisphere Agent has restarted, verify that Navisphere Agent is using the IP address that is entered in the agentID.txt file. To do this, check the new HostIdFile.txt file. You should see the IP address that is entered in the agentID.txt file.The HostIdFile.txt file is in the following directory for your operating system:
AIX :/etc/log/HostIdFile.txt
HP-UX :/etc/log/HostIdFile.txt
Linux :-/var/log/HostIdFile.txt
Solaris :-/etc/log/HostIdFile.txt
For VMware ESX Server 2.5.0 and later
1. Confirm that Navisphere agent is not installed.
2. Using a text editor that does not add special formatting, create or edit a file named agentID.txt in either / (root) or in a directory of your choice.
3. Add the hostname and IP address lines as described above. This file should contain only these two lines, without formatting.
4. Save the agentID.txt file.
5. If you created the agentID.txt file in a directory other than root, for subsequent Agent restarts to use the correct path to the agentID.txt file, set the environment variable EV_AGENTID_DIRECTORY to point to the directory where you created agentID.txt.
6. If a HostIdFile.txt file is present in the /var/log/ directory, delete or rename it.
7. Reboot the VMWARE ESX server.
8. Install and start Navisphere Agent and confirm that it has started.
NOTE: Before installing Navisphere Agent, refer to the EMC Support Matrix and confirm that you are installing the correct version.
NOTE: If necessary, you can restart the Navisphere Agent
NOTE: Navisphere may take some time to update, however, it should update within 10 minutes.

9. Once the Navisphere Agent has restarted, verify that Navisphere Agent is using the IP address that is entered in the agentID.txt file. To do this, check the new HostIdFile.txt file which is located in the /var/log/ directory. You should see the IP address that is entered in the agentID.txt file.

For Microsoft Windows:
1. Using a text editor that does not add special formatting, create a file named agentID.txt in the directory C:/ProgramFiles/EMC/Navisphere Agent.
2. Add the hostname and IP address lines as described above. This file should contain only these two lines, without formatting.
3. Save the agentID.txt file.
4. If a HostIdFile.txt file is present in the C:/ProgramFiles/EMC/Navisphere Agent directory, delete or rename it.
5. Restart the Navisphere Agent
6. Once the Navisphere Agent has restarted, verify that Navisphere Agent is using the correct IP address that is entered in the agentID.txt file. Either:
· In Navisphere Manager, verify that the host IP address is the same as the IP address that you you entered in the agentID.txt file. If the address is the same, the agentID.txt file is configured correctly.
· Check the new HostIdFile.txt file. You should see the IP address that is entered in the agentID.txt file.

We have discussed about CLARiiON. How to create LUN,RAID Group etc. before I shold discuss about adding storage to host. I must discuss about Navisphere Host agent. This is most important service/daemon which runs on host and communicate with CLARiiON. Without Host agent you can not resgister host with storage group automatically. Then if you want register host with Navishere Host agent then you need to register manually.

The Host Agent registers the server’s HBA (host bus adapter) with the attached storage system when the Agent service starts. This action sends the initiator records for each HBA to the storage system. Initiator records are used to control access to storage-system data. The Agent can then retrieve information from the storage system automatically at startup or when requested by Navisphere Manager or CLI. The Host Agent can also:
· Send drive mapping information to the attached CLARiiONstorage systems.
· Monitor storage-system events and can notify personnel by email, page, or modem when any designated event occurs.
· Retrieve LUN WWN (world wide name) and capacity information from Symmetrix storage systems.

You can change the storage system password in Navisphere Manager as follows:
1. Open Navisphere Manager
2. Click Tools > Security > Change Password.

3. In the Change Password window, enter the old (current) password in the Old Password text box.
4. Enter the new password in the New Password text box and then enter it again in the Confirm New Password text box.
5. Click OK to apply the new password or Cancel to keep the current password.
6. In the confirmation popup, click either Yes to change the password or No to cancel the change and retain your current (old) password.
Note: If you click Yes, you will briefly see "The operation successfully completed" and then you will be disconnected. You will need to log back in using the new password.

I am going to demonstrate full LAB exercise of CLARiiON. If anybody interested to any specific LAB exercise please send me mail I will try to help and give LAB exercise. There are many exercise like:
1) Create RAID Group
2) Bind the LUN
3) Create Storage Group
4) Register the Host
5) Present LUN to Host
6) Create Meta LUN etc.

I will try to cover all the exercise including if you need anything extra exercise. Very Easy way to allocate the storage using Allocation wizard provided everything connected and visible to CLARiiON.

CLARiiON LAB Session -I

I am going to demonstrate LAB Exercise for Allocation Storage to Host from CX Array using Allocation Wizard of Navisphere Manager. I will be giving demo other method as well like allocating storage without wizard because some time host will not login to CX Frame. I will be discussing command line as well who are more interested in scripting.
Steps 1:
Login to Navisphere Manager ( Take any IP of any SP’s in your domain and type on browser).



You can see the all the clariion listing under each Domain.



Steps 2: Click Allocation on Left Side Menu Tree.



Steps 3: Click next once you have selected Host name (Whom you are going to present LUN)
You can select Assign LUN to this server or you can continue without assigning.



Steps 4: Select Next and Select CX frame where you want to create LUN.



Steps 5: Select Next, If you have created RAID Group It will be listed here otherwise you can create new Raid Group by selecting New Raid Group.( I will be discussing later how to create different RAID Group)


Steps 6: Select RAID Group ID and depending on Raid Group select number of disk for example if you are creating Raid 5 (3+1) then select 4 disks.
Once You have created raid group. It will list under RAID Group dialog box.Click Next and select the Number of LUN you want to create on same RAID Group. For example RAID Group created for 3+1 disk of 500 GB each disk means you can use roughly 500X4X70% GB. Now you want to create different size of each LUN on the same RAID Group



Steps 7: Once you have selected Number of LUN and Size of LUN. You can verify the configuration before you run the finish button.


Steps 8: Once you click the Finish Button you can see the status. System will create Storage Group with Server Name (You can change storage group name later) and add created LUN into storage Group.


You can verify the entire configuration by clicking storage group name:

About Me

My photo
Sr. Solutions Architect; Expertise: - Cloud Design & Architect - Data Center Consolidation - DC/Storage Virtualization - Technology Refresh - Data Migration - SAN Refresh - Data Center Architecture More info:- diwakar@emcstorageinfo.com
Blog Disclaimer: “The opinions expressed here are my personal opinions. Content published here is not read or approved in advance by EMC and does not necessarily reflect the views and opinions of EMC.”
EMC Storage Product Knowledge Sharing