Showing posts with label SRDF. Show all posts
Showing posts with label SRDF. Show all posts

SRDF Pair Status

Posted by Diwakar ADD COMMENTS

SRDF/S and SRDF/A configuration involves tasks such as suspending and resuming the replication, failover from R1 side to R2, restoring R1 or R2 volumes from their BCV, and more. You perform these and other SRDF/S or SRDF/A operations using both symrdf and TimeFinder command symmir. The below details are for SRDF Pair states during SRDF procedure.

SyncInProg :- A synchronization is currently in progress between the R1 and the R2. There are existing invalid tracks between the two pairs and the logical link between both sides of an RDF pair is up.

Synchronized :- The R1 and the R2 are currently in a synchronized state. The same content exists on the R2 as the R1. There are no invalid tracks between the two pairs.

Split :- The R1 and the R2 are currently Ready to their hosts, but the link is Not Ready or Write Disabled.

Failed Over :- The R1 is currently Not Ready or Write Disabled and operations been failed over to the R2.

R1 Updated :- The R1 is currently Not Ready or Write Disabled to the host, there are no local invalid tracks on the R1 side, and the link is Ready or Write Disabled.

R1 UpdInProg :- The R1 is currently Not Ready or Write Disabled to the host, there are invalid local (R1) tracks on the source side, and the link is Ready or Write Disabled.
Suspended :- The RDF links have been suspended and are Not Ready or Write Disabled. If the R1 is Ready while the links are suspended, any I/O accumulates as invalid tracks owed to the R2.

Partitioned :- The SYMAPI is currently unable to communicate through the corresponding RDF path to the remote Symmetrix. Partitioned may apply to devices within an RA group. For example, if SYMAPI is unable to communicate to a remote Symmetrix via an RA group, devices in that RA group are marked as being in the Partitioned state.

Mixed :- Mixed is a composite SYMAPI device group RDF pair state. Different SRDF pair states exist within a device group.

Invalid :- This is the default state when no other SRDF state applies. The combination of R1, R2, and RDF link states and statuses do not match any other pair state. This state may occur if there is a problem at the disk director level.

Consistent :- The R2 SRDF/A capable devices are in a consistent state. Consistent state signifies the normal state of operation for device pairs operating in asynchronous mode.

EMC SRDF Mode

Posted by Diwakar ADD COMMENTS

Conceptually, even operationally, SRDF is very similar to Timefinder. About the only difference is that SRDF works across Symms; while Timefinder works internally to one Symm.That difference, intersymm vs intrasym, means that SRDF operations can cover quite a bit of ground geographically. With the advent of geographically separated symms, the integrity of the data from one symm to the other becomes a concern. EMC has a number of operational modes in which the SRDF operates. The choice between these operational modes is a balancing act between how quickly the calling application gets an acknowledgement back versus how sure you need to be that the data has been received on the remote symm.

Synchronous mode

Synchronous mode basically means that the remote symm must have the I/O in cache before the calling application receives the acknowledgement. Depending on distance between symms, this may have a significant impact on performance which is the main reason that EMC suggests this set up in a campus (damn near colocated) environment only.

If you're particularly paranoid about ensuring data on one symm is on the other, you can enable theDomino effect (I think you're supposed to be hearing suspense music in the background right about now...). Basically, the

domino effect ensures that the R1 devices will become "not ready" if the R2 devices can't be reached for any reason - effectively shutting down the filesystem(s) untilthe problem can be resolved.

Semi-synchronous mode

In semi-synchronous mode, the R2 devices are one (or less) write I/O out of sync with their R1 device counterparts. The application gets the acknowledgement as soon as the first write I/O gets to the local cache. The second I/O isn't acknowledged until the first is in the remote cache. This should speed up the application over the synchronous mode. It does, however, mean that your data might be a bit out of sync with the local symm.

Adaptive Copy-Write Pending

This mode copies data over to the R2 volumes as quickly as it can; however, doesn't delay the acknowledgement to the application. This mode is useful where some data loss is permissable andlocal performance is paramount.

There's a configurable skew parameter that lists the maximum allowable dirty tracks. Once that number of pending I/Os is reached, the system switches to the predetermined mode (probably semi-synchronous) until the remote symm catches up. At that point, it switches back to adaptive copy-write pending mode.



Lets talk about SRDF feature in DMX for disaster recovery/remote replication/data migration. In today’s business environment it is imperative to have the necessary equipment and processes in place to meet stringent service-level requirements. Downtime is no longer an option. This means you may need to remotely replicate your business data to ensure availability. Remote data replication is the most challenging of all disaster recovery activities. Without the right solution it can be complex, error prone, labor intensive, and time consuming.

SDRF/S addresses these problems by maintaining real-time data mirrors of specified Symmetrix logical volumes. The implementation is a remote mirror, Symmetrix to Symmetrix.
¨ The most flexible synchronous solution in the industry
¨ Cost effective solution with native GigE connectivity
¨ Proven reliability
¨ Simultaneous operation with SRDF/A, SRDF/DM and/or SRDF/AR in the same system
¨ Dynamic, Non-disruptive mode change between SRDF/S and SRDF/A
¨ Concurrent SRDF/S and SRDF/A operations from the same source device
¨ A powerful component of SRDF/Star, multi-site continuous replication over distance with zero RPO service levels.
¨ Business resumption is now a matter of a systems restart. No transportation, restoration, or restoring from tape is required. And SRDF/S supports any environment that connects to a Symmetrix system – mainframe, open system, NT, AS4000, or Celerra.
¨ ESCON fiber, fiber channel, Gigabit Ethernet, T3, ATM, I/P, and Sonet rings are supported, providing choice and flexibility to meet specific service level requirements. SRDF/S can provide real-time disk mirrors across long distances without application performance degradation, along with reduced communication costs. System consistency is provided by ensuring that all related data volumes are handled identically – a feature unique to EMC. Hope this litte article will help you to understand about SRDF/S.

About Me

My photo
Sr. Solutions Architect; Expertise: - Cloud Design & Architect - Data Center Consolidation - DC/Storage Virtualization - Technology Refresh - Data Migration - SAN Refresh - Data Center Architecture More info:- diwakar@emcstorageinfo.com
Blog Disclaimer: “The opinions expressed here are my personal opinions. Content published here is not read or approved in advance by EMC and does not necessarily reflect the views and opinions of EMC.”
EMC Storage Product Knowledge Sharing