Showing posts with label RAID Stripe. Show all posts
Showing posts with label RAID Stripe. Show all posts

I have discussed about lab exercise for Storage Administration purpose, Now, Lets talk about something technical. You understand that we can create Raid 5 protected LUN means we will use striping. So, How will you calculate stripe size of LUN.


Before calculating the stripe size of data in Clariion , we have discussed about how many disks make up the Raid Group, as well as the Raid Type.






I have two examples of Stripe Size of a LUN. The above xample shows a Raid 5, five disk Raid Group.As I mentioned in earlier post this referred to as 4 + 1. That means that of the five disks that make up the Raid Group, four of the disks are used to store the data, and the remaining disk is used to store the parity information for the stripe of data in the event of a disk failure and rebuild. In Clariion settings of a disk format in which it formats the disk into 128 blocks for the Element Size (amount of blocks written to a disk before writing/striping to the next disk in the Raid Group), which is equal to the 64 KB Chunk Size of data that is written to a disk before writing/striping to the next disk in the Raid Group. To determine the Data Stripe Size, we simply calculate the number of disks in the Raid Group for Data (4) x the amount of data written per disk (64 KB), and get the amount of data written in a Raid 5, Five disk Raid Group (4 + 1) as 256 KB of data. To get the Element Stripe Size, we calculate the number of disks in the Raid Group (4) x the number of blocks written per disk (128 blocks) and get the Element Stripe Size of 512 blocks.
The next example of another Raid 5 group, however the number of disks in the Raid Group is nine (9). This is combined to as 8 + 1. Again, eight (8) disks for data, and the remaining disk is used to store the parity information for the stripe of data.
To determine the Data Stripe Size, we simply calculate the number of disks in the Raid Group for Data (8) x the amount of data written per disk (64 KB), and get the amount of data written in a Raid 5, Five disk Raid Group (8 + 1) as 512 KB of data. To get the Element Stripe Size, we calculate the number of disks in the Raid Group (8) x the number of blocks written per disk (128 blocks) and get the Element Stripe Size of 1024 blocks.
In summary: The Stripe Size again is the amount of data written to a stripe of the Raid Group, and the Element Stripe Size is the number of blocks written to a stripe of a Raid Group.

Very simply, RAID striping is a means of improving the performance of large storage systems. For most normal PCs or laptops, files are stored in their entirety on a single disk drive, so a file must be read from start to finish and passed to the host system. With large storage arrays, disks are often organized into RAID groups that can enhance performance and protect data against disk failures. Striping is actually RAID-0; a technique that breaks up a file and interleaves its contents across all of the disks in the RAID group. This allows multiple disks to access the contents of a file simultaneously. Instead of a single disk reading a file from start to finish, striping allows one disk to read the next stripe while the previous disk is passing its stripe data to the host system -- this enhances the overall disk system performance, which is very beneficial for busy storage arrays.

Parity can be added to protect the striped data. Parity data is calculated for the stripes and placed on another disk drive. If one of the disks in the RAID group fails, the parity data can be used to rebuild the failed disk. However, multiple simultaneous disk failures may result in data loss because conventional parity only accommodates a single disk failure.

RAID striping
The performance impact of RAID striping at the array and operating system level.
RAID striping or concatenation: Which has better performance?
Designing storage for performance is a very esoteric effort by nature. There are quite a few variables that need to be taken into account.
RAID-50: RAID-5 with suspenders
RAID-50 combines striping with distributed parity for higher reliability and data transfer capabilities.
RAID-53: RAID by any other name
RAID-53 has a higher transaction rate than RAID-3, and offers all the protection of RAID-10, but there are disadvantages as well.
RAID-10 and RAID-01: Same or different?
The difference between RAID-10 and RAID-01 is explained.
RAID explained
RAID, or redundant array of independent disks, can make many smaller disks appear as one large disk to a server for better performance and higher availability.

About Me

My photo
Sr. Solutions Architect; Expertise: - Cloud Design & Architect - Data Center Consolidation - DC/Storage Virtualization - Technology Refresh - Data Migration - SAN Refresh - Data Center Architecture More info:- diwakar@emcstorageinfo.com
Blog Disclaimer: “The opinions expressed here are my personal opinions. Content published here is not read or approved in advance by EMC and does not necessarily reflect the views and opinions of EMC.”
EMC Storage Product Knowledge Sharing