Showing posts with label VMAX. Show all posts
Showing posts with label VMAX. Show all posts

VMware hosts require few mandatory FA bits setting before SAN storage to be provision. Apart from FA bits a series of procedure require from installing HBAs, HBA Firmware and drivers, zoning, mapping, masking devices, to configure kernel files and devices.

Let’s assume we have already identified Symmetrix FA port for VMware host and completed zoning on switch. It is better to have separate FA pair for VMware host. (You can connect VMware host to 2 pair FA if you have enough FA resources available and going to deploy critical application which require more performance).

You can identify the FA port available on Symmetrix:

symcfg list –connections.


Verify port flag settings-

symcfg list –fa -p -v

( FA-Number and Port where your host connected/zoned)


The following FA bits/flag require being set/Enable:

                     i)    Common Serial Number (C)


                    ii)    VCM State (VCM) --- (ACLX for V-MAX)


                    iii)    SCSI 3 (SC3)


                    iv)    SPC 2


                    v)     Unique World Wide Name (UWWN)


                   vi)     Auto-negotiation (EAN)


                   vii)    Point to Point (P)

Note :- FA bit/flag requirement may vary depending on Symmetrix, but most of times you require to enable above bit for VMware host.

Create a command file for setting FA port flags, call it faflags.cmd with the below entry:

# For C-Bit

set port FA:Port Common_Serial_Number=enable;


set port FA:Port Common_Serial_Number=enable;

# For VCM-Bit

set port FA:Port VCM_State=enable;


set port FA:Port VCM_State=enable;

# For SC3-Bit

set port FA:Port scsi_3=enable;


set port FA:Port scsi_3=enable;

# For SP-2-Bit

set port FA:Port SPC2_Protocol_Version=enable;


set port FA:Port SPC2_Protocol_Version=enable;


# For UWWN-Bit

set port FA:Port Unique_WWN=enable;


set port FA:Port Unique_WWN=enable;

# For EAN-Bit

set port FA:Port Auto_Negotiate=enable;


set port FA:Port Auto_Negotiate=enable;

# For PTOP-Bit

set port FA:Port Init_Point_to_Point=enable;


set port FA:Port Init_Point_to_Point=enable;

Once you prepare command file, you can commit the file:

symconfigure –sid preview –f  faflags.cmd

Verify port flag settings once again, required FA flags should have be enabled by now-

symcfg list –fa -p -v

You are ready to provision SAN storage for VMware host now…


In the current storage markets and technology, storage tiers are defined by availability, functionality, performance and costs. In fact data can move up and down tiers as time and business required.

Tier "0" is not new in storage market but for implementation purposes it has been difficult to accommodate because it requires best performance and lowest latency. Enterprise Flash disks (Solid State Disks) capable to meet this requirement. It is possible to get more performance for company most critical applications. The performance can be gained through using Flash drives supported in VMAX and DMX-4 systems. One Flash drive can deliver IOPS equivalent to 30 15K RPM hard disk drives with approximately 1 ms application response time. Flash memory achieves performance and the lowest latency ever available in the enterprise class storage array.

Tier “0” application can be closely coupled with other storage tier within Symetrix series for consistency and efficiency, reducing cost of company for manual data layout or data migration from old disk to new high speed disk.

Tier “0” storage can be used to accelerate online transaction processing, accelerating performance with large indices and frequently accessed database tables i.e. Oracle, DB2 databases and SAP R/3. Tier 0 can also improve performance in batch processing and shorten batch processing in windows environments.

Tier “0” storage performance will help application that needs the lowest latency and response time possible. The following applications can get benefited through using Tier 0 storage:

- Algorithmic trading
- Data modeling
- Trade optimization
- Realtime data/feed processing
- Contextual web advertising
- Other realtime transaction systems
- Currency exchange and arbitrage

Tier “0” storage is most beneficial with random read miss application. If random read miss percentage is low, application will not see any performance difference since writes and sequential reads/writes already leverage Symmetrix cache to achieve the lowest possible response time.

For example, if the read hit percentage is high >90 % as compared to read misses, such application like DSS, Streaming media, improvements provided by Tier 0 storage will not likely be enough to be cost-effective.

Think when you are creating a point-in-time image for multiple devices. It is easy to create a point-in-time image of entire set of logical device at same time. In order achieve this you need to shut down an application so that no IO will occurs while you creating a point-in-time image. This is big problem in today’s environment where every company looking solution for zero down time.
The EMC provided solution to this problem is called “Enginuity Consistency Assist”. When you create a set of sessions and invoke Enginuity Consistency Assist, the Symmetrix aligns the I/O of those devices and halts all I/O from the host systems very briefly—much faster than the applications can detect—while it creates the session. It then resumes normal operation without any application impact.
TimeFinder Consistent Split using (TimeFinder/Consistency Groups) allows the splitting off of a consistent, re-startable image of an Oracle database instance within seconds with no interruption to the online Oracle database instance.
Ÿ - Allows users to split off a dependent write consistent, re-startable image of application without interrupting online services
Ÿ - Using TimeFinder/Consistency Groups to defer write I/O at the Symmetrix before a split
Ÿ - Consistent split can be performed by any host running Solutions Enabler connected to the Symmetrix
Ÿ - Tested and available including HP-UX, Solaris, AIX, Linux, and Windows
Ÿ - No database shutdown or requirement to have database put into backup mode (Oracle).

Using TF/CG, consistent splits helps to avoid inconsistencies and restart problems that can occur with using Oracle hot-backup mode (not quiescing the database).
The major benefits of TF/CG are:
• No disruption to the online Oracle database to obtain a Point-in-Time image
• Provides a consistent, re-startable image of the Oracle database for testing new versions or database patch updates before deploying for use in production environments
• Can be used to obtain a business point of consistency for business restart requirements for which Oracle has been identified as one of multiple databases for such an environment.

The same benefits apply using TF/CG in a clustered environment as in a non-clustered environment:
- No disruption to the online Oracle database to obtain a Point-in-Time image in a Oracle single instance environment or when using Oracle Real Application Clusters
- Provides a consistent, re-startable image of the Oracle database for testing new versions or database patch updates before deploying for use in clustered production environments
- Can be used to obtain a business point of consistency for business restart requirements for which Oracle has been identified as one of multiple databases for such an environment.

Auto-provisioning requires Enginuity 5874 or later. It simplify Symmetrix provisioning by allowing you to create group of devices like storage group in CLARiiON, Front-End Port Group and Host Initiators Group and then associate these groups with each other in a masking view.

The following are the basic steps for provisioning Symmetrix using Auto-Provisioning:-

1) Create a Storage Group
2) Create a Port Group
3) Create an Initiator Group
4) Associate the groups in a Masking View.


Creating Storage Group:- It is component of Auto-Provisioning group and FAST ( Will discuss about FAST in later post), both require Enginiuity 5874. The maximum number of storage group allowed per array is 8192. A storage group can contain up to 4096 devices. A Symmetrix device can belong to more than one storage group.

Note:- By default Dynamic LUN addresses will assigned to each device. If can manually assign the host LUN addresses for the device you are adding to the group by clicking Set LUN Address- Storage group dialog box.

Creating Port Group:- A port can belong to more than one port group and port must have the ACLX bit enabled. For example if you want FA 5A and 12 A for windows operating system, you can create port group name called WIN_PortGrp or Win_FA5A_FA12A_PrtGrp etc.

Creating Initiator Group:- The maximum number of initiator groups allowed per Symmetrix array is 8000. An initiator group can contain up to 32 initiator of any type and contain other initiator groups (cascaded to only one level).

Initiator Group name must be unique from other initiator groups on the array and cannot exceed 64 characters. Initiator group names are case-insensitive.

Creating Masking view:- It just a co-relation between Storage Group, Port Group and Initiator Group and you are done! Device will be mapped automatically to selected port group and masked to selected initiator groups.

About Me

My photo
Sr. Solutions Architect; Expertise: - Cloud Design & Architect - Data Center Consolidation - DC/Storage Virtualization - Technology Refresh - Data Migration - SAN Refresh - Data Center Architecture More info:- diwakar@emcstorageinfo.com
Blog Disclaimer: “The opinions expressed here are my personal opinions. Content published here is not read or approved in advance by EMC and does not necessarily reflect the views and opinions of EMC.”
EMC Storage Product Knowledge Sharing