We have discuss about Fibre Technology in brief in earlier post. We will be discussing about FC Port Addressing and Fabric Ports. There are certain rules for Port addressing and different ports used for it. Lets summarise point for each in breif.

FC Port Addressing:

  1. FC uses a 3 Byte address identifier.
  2. Dynamically assigned during the LOGIN process.
    Reserved well known addresses used for Fabric, Alias Server, or the Multicast Server - hex'FFFFF0' to hex'FFFFFE'.
  3. hex'FFFFFF' is the Broadcast address.
  4. Arbitrated Loop addresses are 1 Byte long but still use the 3 Byte address identifier.
  5. But still a Global identifier is required and is achieved through a fixed 64 bit value called Name_Identifier or WWN.
  6. Name_Identifier is used to identify nodes (Node_Name), a Port (Port_Name) and a Fabric (Fabric_Name).
  7. Not used to route frames, but used in mapping to ULPs.

FC Ports:

  1. N_Port: Any port on a Node device e.g. a disk, a PC that provides switched interconnections.
  2. Fabric: The entity which interconnects various N_Ports attached to it and is capable of routing frames.
  3. F_Port: A port on a Fabric device that connects to a N_Port.
  4. E_Port: A port on the Fabric that connects through a link to another Fabric port (inter-element expansion port).
  5. G_Port: A Generic Fabric Port capable of behaving either as an E_Port or an F_Port. This behavior is determined at Login time.
  6. L_Port: A N_Port or an F_Port that contains Arbitrated Loop functions associated with Arbitrated Loop topology.
  7. FL_Port: A Fabric Port that may either connect to an N_Port or to an Arbitrated Loop.
  8. GL_Port: A Fabric Port that may connect either to an N_Port, to an E_Port, or to an Arbitrated Loop.
  9. S_Port: A Logical node within the Fabric, capable of communicating either with other Fabric Ports or with N_Ports.

Lets discuss about LUNz/LUN_Z in Operating System specially in CLARiiON environment. We know that what is LUN?? LUN is nothing but logical slice of disc which stands for Logical Unit Number. This terminology comes with SCSI-3 group, if you want to know more just visit www.t10.org and www.t11.org

A SCSI-3 (SCC-2) term defined as "the logical unit number that an application client uses to communicate with, configure and determine information about an SCSI storage array and the logical units attached to it. The LUN_Z value shall be zero." In the CLARiiON context, LUNz refers to a fake logical unit zero presented to the host to provide a path for host software to send configuration commands to the array when no physical logical unit zero is available to the host. When Access Logix is used on a CLARiiON array, an agent runs on the host and communicates with the storage system through either LUNz or a storage device. On a CLARiiON array, the LUNZ device is replaced when a valid LUN is assigned to the HLU LUN by the Storage Group. The agent then communicates through the storage device. The user will continue, however, to see DGC LUNz in the Device Manager.
LUNz has been implemented on CLARiiON arrays to make arrays visible to the host OS and PowerPath when no LUNs are bound on that array. When using a direct connect configuration, and there is no Navisphere Management station to talk directly to the array over IP, the LUNZ can be used as a pathway for Navisphere CLI to send Bind commands to the array.
LUNz also makes arrays visible to the host OS and PowerPath when the host’s initiators have not yet ‘logged in to the Storage Group created for the host. Without LUNz, there would be no device on the host for Navisphere Agent to push the initiator record through to the array. This is mandatory for the host to log in to the Storage Group. Once this initiator push is done, the host will be displayed as an available host to add to the Storage Group in Navisphere Manager (Navisphere Express).
LUNz should disappear once a LUN zero is bound, or when Storage Group access has been attained.To turn on the LUNz behavior on CLARiiON arrays, you must configure the "arraycommpath.

Lets discuss about most important thing in SAN environment ZONING. Zoning is the only way to restrict access for storage to all the host. We will be discussing about Zoning in details.

There are two type of Zoning basically : Hard Zoning and Soft Zoning. Lets first define what is Zoning??

Zoning is nothing but map of host to device to device connectivity is overlaid on the storage networking fabric, reducing the risk of unauthorized access.Zoning supports the grouping of hosts, switches, and storage on the SAN, limiting access between members of one zone and resources in another.

Zoning also restricts the damage from unintentional errors that can corrupt storage allocations or destabilize the network. For example, if a Microsoft Windows server is mistakenly connected to a fabric dedicated to UNIX applications, the Windows server will write header information to each visible LUN, corrupting the storage for the UNIX servers. Similarly, Fibre Channel register state change notifications (RSCN) that keep SAN entities apprised of configuration changes, can
sometimes destabilize the fabric. Under certain circumstances, an RSCN storm will overwhelm a
switch’s ability to process configuration changes, affecting SAN performance and availability for
all users. Zoning can limit RSCN messages to the zone affected by the change, improving overall
SAN availability.

By segregating the SAN, zoning protects applications against data corruption, accidental access,
and instability. However, zoning has several drawbacks that constrain large-scale consolidated
infrastructures.

Lets first discuss what are type of Zoning and pro and cos:

As I have mentioned earlier that Zoning got two types basically you can say three but only 2 types popular in industry.

1) Soft Zoning 2) Hard Zoning 3) Broadcast Zoning

Soft Zoning : Soft zoning uses the name server to enforce zoning. The World Wide Name (WWN) of the elements enforces the configuration policy.
Pros:
- Administrators can move devices to different switch ports without manually reconfiguring
zoning. This is major flexibility to administrator. You don't need to change once you create zone set for particular device connected on switch. You create a zone set on switch and allocate storage to host. You can change any port for device connectivity

Cons:
- Devices might be able to spoof the WWN and access otherwise restricted resources.
- Device WWN changes, such as the installation of a new Host Bus Adapter (HBA) card, require
policy modifications.
- Because the switch does not control data transfers, it cannot prevent incompatible HBA
devices from bypassing the Name Server and talking directly to hosts.

Hard Zoning: - Hard Zoning uses the physical fabric port number of a switch to create zones and enforce the policy.

Pros:

- This system is easier to create and manage than a long list of element WWNs.
- Switch hardware enforces data transfers and ensures that no traffic goes between
unauthorized zone members.
- Hard zoning provides stronger enforcement of the policy (assuming physical security on the
switch is well established).

Cons:
- Moving devices to different switch ports requires policy modifications.

Broadcast Zoning: · Broadcast Zoning has many unique characteristics:
- This traffic allows only one broadcast zone per fabric.
- It isolates broadcast traffic.
- It is hardware-enforced.

If you ask me how to choose the zoning type then it is based on SAN requirement in your data center environment. But port zoning is more secure but you have to be sure that device is not going to change otherwise every time you change in storage allocation you have to modify your zoning.

Generally use in industry is soft zoning but as i have mentioned soft zoning has many cos. So, it is hard to say which one you should use always. So, analyze your datacenter environment and use proper zoning.

Broadcast zoning uses in large environment where are various fabric domain.

Having said that Zoning can be enforced either port number or WWN number but not both. When both port number and WWN specify a zone, it is a software-enforced zone. Hardware-enforced zoning is enforced at the Name Server level and in the ASIC. Each ASIC maintains a list of source port IDs that have permission to access any of the ports on that ASIC. Software-enforced zoning is exclusively enforced through selective information presented to end nodes through the fabric Simple Name Sever (SNS).

If you know about switch then you must notice that in Cisco we have FCNS database and Brocade Name Server. Both are for same purpose to store all the information about port and other. FCNS is stand for Fibre Channel Name Server.

There are plenty of thing on Switch itself to protect your SAN environment. Each vendor comes with different security policy. Zoning is the basic thing in order to secure your data access.

Hope this info will be useful for beginner. Please raise a comment if you want to know specific things.

About Me

My photo
Sr. Solutions Architect; Expertise: - Cloud Design & Architect - Data Center Consolidation - DC/Storage Virtualization - Technology Refresh - Data Migration - SAN Refresh - Data Center Architecture More info:- diwakar@emcstorageinfo.com
Blog Disclaimer: “The opinions expressed here are my personal opinions. Content published here is not read or approved in advance by EMC and does not necessarily reflect the views and opinions of EMC.”
EMC Storage Product Knowledge Sharing