AX150 :-Dual storage processor enclosure with Fibre-Channel interface to host and SATA-2 disks. AX150i :-Dual storage processor enclosure with iSCSI interface to host and SATA-2 disks. AX100 :- Dual storage processor enclosure with Fibre-Channel interface to host and SATA-1 disks.
AX100SC
Single storage processor enclosure with Fibre-Channel interface to host and SATA-1 disks.
AX100i
Dual storage processor enclosure with iSCSI interface to host and SATA-1 disks.
AX100SCi
Single storage processor enclosure with iSCSI interface to host and SATA-1 disks.
CX3-80
SPE2 - Dual storage processor (SP) enclosure with four Fibre-Channel front-end ports and four back-end ports per SP.
CX3-40
SP3 - Dual storage processor (SP) enclosure with two Fibre Channel front-end ports and two back-end ports per SP.
CX3-40f
SP3 - Dual storage processor (SP) enclosure with four Fibre Channel front -end ports and four back-end ports per SP
CX3-40c
SP3 - Dual storage processor (SP) enclosure with four iSCSI front-end ports, two Fibre Channel front -end ports, and two back-end ports per SP.
CX3-20
SP3 - Dual storage processor (SP) enclosure with two Fibre Channel front-end ports and a single back-end port per SP.
CX3-20f
SP3 - Dual storage processor (SP) enclosure with six Fibre Channel front-end ports, and a single back-end port per SP.
CX3-20c
SP3 - Dual storage processor (SP) enclosure with four iSCSI front-end ports, two Fibre Channel front-end ports, and a single back-end port per SP.
CX600, CX700
SPE - based storage system with model CX600/CX700 SP, Fibre-Channel interface to host, and Fibre Channel disks
CX500, CX400, CX300, CX200
DPE2 - based storage system with model CX500/CX400/CX300/CX200 SP, Fibre-Channel interface to host, and Fibre Channel disks.
CX2000LC
DPE2- based storage system with one model CX200 SP, one power supply (no SPS),Fibre-Channel interface to host, and Fibre Channel disks.
C1000 Series
10-slot storage system with SCSI interface to host and SCSI disks
C1900 Series
Rugged 10-slot storage system with SCSI interface to host and SCSI disks
C2x00 Series
20-slot storage system with SCSI interface to host and SCSI disks
C3x00 Series
30-slot storage system with SCSI or Fibre Channel interface to host and SCSI disks
FC50xx Series
DAE with Fibre Channel interface to host and Fibre Channel disks
FC5000 Series
JBOD with Fibre Channel interface to host and Fibre Channel disks
FC5200/5300 Series
iDAE -based storage system with model 5200 SP, Fibre Channel interface to host, and Fibre channel disks
FC5400/5500 Series
DPE -based storage system with model 5400 SP, Fibre Channel interface to host, and Fibre channel disks
FC5600/5700 Series
DPE -based storage system with model 5600 SP, Fibre Channel interface to host, and Fibre Channel disks
FC4300/4500 Series
DPE -based storage system with either model 4300 SP or model 4500 SP, Fibre Channel interface to host, and Fibre Channel disks
FC4700 Series
DPE -based storage system with model 4700 SP, Fibre Channel interface to host, and Fibre Channel disks
IP4700 Series
Rackmount Network-Attached storage system with 4 Fibre Channel host ports and Fibre Channel disks.

RAID 6 Protection

RAID 6 was implemented to provide superior data protection, tolerating up to two drive failures in the same RAID group. Other RAID protection schemes, such as mirroring (RAID 1), RAID S, and RAID 5, protect a system from a single drive failure in a RAID group.
RAID 6 provides this extra level of protection while keeping the same dollar cost per megabyte of usable storage as RAID 5 configurations. Although two parity drives are required for RAID 6, the same ratio of data to parity drives is consistent. For example, a RAID 6 6+2 configuration consists of six data segments and two parity segments. This is equivalent to two sets of a RAID 5 3+1 configuration, which is three data segments and one parity segment, so 6+2 = 2(3+1).

We have storage array product from different vendor. Everyone talkes about active-active and active-passive device technology. With different types of storage arrays and host connection types, it is important to understand the difference between active-active and active-passive devices. Here is short explanation of the differences:
Active-active (for example, Symmetrix arrays)
In an active-active storage system, if there are multiple interfaces to a logical device, they all provide equal access to the logical device. Active-active means that all interfaces to a device are active simultaneously.
Active-passive (for example, CLARiiON arrays)
Active-passive means that only one interface to a device is active at a time, and any others are passive with respect to that device and waiting to take over if needed.
In an active-passive storage system, if there are multiple interfaces to a logical device, one of them is designated as the primary route to the device (that is, the device is assigned to that interface card). Typically, assigned devices are distributed equally among interface cards. I/O is not directed to paths connected to a non-assigned interface. Normal access to a device through any interface card other than its assigned one is either impossible (for example, on CLARiiON arrays) or possible, but much slower than access through the assigned interface card.
In the event of a failure, logical devices must be moved to another interface. If an interface card fails, logical devices are reassigned from the broken interface to another interface. This reassignment is initiated by the other, functioning interface. If all paths from a host to an interface fail, logical devices accessed on those paths are reassigned to another interface with which the host can still communicate. EitherApplication-Transparent Failover (ATF) or PowerPath, which instructs the storage system to make the reassignment, initiates this reassignment. These reassignments are known as trespassing. Trespassing can take several seconds to complete. However, I/Os do not fail during it. After devices are trespassed, ATF or PowerPath detects the changes and seamlessly routes data via the new route. After a trespass, logical devices can be trespassed back to their assigned interface. This occurs automatically if PowerPath's periodic autorestore feature is enabled. It occurs manually if powermt restore is run, which is the faster approach. Or if ATF is in use, a manual restore of the path can be executed to restore the original path.

About Me

My photo
Sr. Solutions Architect; Expertise: - Cloud Design & Architect - Data Center Consolidation - DC/Storage Virtualization - Technology Refresh - Data Migration - SAN Refresh - Data Center Architecture More info:- diwakar@emcstorageinfo.com
Blog Disclaimer: “The opinions expressed here are my personal opinions. Content published here is not read or approved in advance by EMC and does not necessarily reflect the views and opinions of EMC.”
EMC Storage Product Knowledge Sharing